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Abstract. We describe the calculation of the evolution of the gluon density in x from an initial value
x = x0 = 0.01 to smaller values, up to x = 10−8 in the hard pomeron formalism with a running coupling
introduced on the basis of the bootstrap equation. The obtained gluon density is used to calculate the
singlet part of the proton structure function. Comparison with experiment and the results following from
the fixed coupling evolution is made.

1 Introduction

Recent results obtained at HERA [1,2] may be interpreted
as a manifestation of the hard pomeron, which naturally
explains a sharp rise of F2(x,Q2) at low x. The original
BFKL hard pomeron, however, has a drawback of treating
the coupling constant as fixed, since it sums only powers
of log 1/x and not those of logQ2. A rigorous way to intro-
duce a running coupling into it still remains beyond the
possibilities of the theory, since it inevitably involves a
problem of low Q2 behaviour and thus of confinement. In
a series of papers [3–6] we have adopted a more intuitive
way to attack this problem, based on the so-called boot-
strap relation [7,8], which is, in fact, the unitarity condi-
tion for the t-channel with a colour quantum number of
a gluon. It ensures that the one-reggeized-gluon exchange
supposed to give a dominant contribution in this channel
is unitary by itself, which is a necessary requirement to use
it as an input for the construction of the BFKL pomeron.

Assuming that this fundamental requirement should
be preseved in the theory with a running coupling, we
proposed a minimal modification of the BFKL pomeron
equation which, on the one hand, satisfies the bootstrap
condition and, on the other hand, leads to the standard
results with the running coupling in the double log (DL)
limit, i.e. when leading terms in the product log 1/x logQ2

are summed. This modification reduces to the substitution
of every momentum squared k2 in the pomeron equation
by a function η(k) which at large k behaves as k2/2αs(k2).
The behaviour of η(k) at low k remains beyond any the-
oretical controle. We parametrize it as

η(k) = (b0/8π)(k2 +m2) ln
k2 +m2

Λ2 (1)
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where Λ is the standard QCD parameter, b0 = 11−(2/3)Nf

and the effective gluon mass m simulates both the confine-
ment effects and the freezing of the coupling.

Solving numerically the pomeron equation in this ap-
proach we found two supercritical pomerons [5]. Adjusting
the mass m to fit the experimental slope of the leading
pomeron of 0.25 (GeV/c)−2 we obtained for their inter-
cepts

∆0 = 0.384, ∆1 = 0.191

and the slope of the subdominant pomeron results α′
1 =

0.124 (GeV/c)−2. Calculating observable quantities with
only these two asymptotic states taken into account we
found that the picture which emerges, in all probability,
corresponds to energies much higher than the present ones
[5]. In particular the average 〈k⊥〉 was found to be very
large (∼ 10 GeV/c) and independent of energy, which may
indicate a saturation of its growth observed at present
energies [6].

To describe the present experimental data it is then
necessary to take into account all the states from the
pomeron equation spectrum. This can be achieved by con-
verting the pomeron equation into an evolution equation
in 1/x and solving it with an initial condition at some (pre-
sumably small) value x = x0. In such an approach, taking
a nonperturbative input at x = x0 adjusted to the experi-
mental data, also the problem of coupling the pomeron to
the hadronic target is solved in an effective way.

This note is devoted to realizing such a program. In
Sect. 2 we state our basic equations. The most difficult
part of the program is to pass from the gluon density to
the observable structure function. It is discussed in Sect. 3.
Section 4 is devoted to fixing the initial gluon distribution
for the future evolution. In Sect. 4 we present our numeri-
cal results. Section 5 contains a discussion and some con-
clusions.
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2 Basic equations

For the forward scattering amplitude the pomeron equa-
tion reads

(H − E)ψ = ψ0 (2)

Here ψ is a semi-amputated (one leg amputated only)
pomeron wave function; E = 1 − j is the pomeron “en-
ergy”, related to its complex angular momentun j; H =
T + V is the “Hamiltonian” consisting of the kinetic en-
ergy given by the sum of the two gluon Regge trajectories,
T = −2ω and of the potential energy V . With a running
coupling introduced according to [3,4] both are expressed
via the mentioned function η (1);

T (k) =
Nc

(2π)2

∫
d2k′η(k)

η(k′)η(k − k′)
(3)

and

V ψ(k) = − T1T2

(2π)2

∫
d2k′ψ(k′)

×
(

2
η(k − k′)

− η(0)
η(k)η(k′)

)
(4)

where Nc is the number of colours and T1(2) are the colour
operators for the two interacting gluons; in the vacuum
channel we have T1T2 = −Nc. Finally, the inhomoge-
neous term ψ0 represents the interaction vertex between
the pomeron and the hadronic target.

Taking the Mellin transformation of (2) one converts
it into an evolution equation in 1/x:

∂

∂ ln 1/x
ψ(x, k) = −Hψ(x, k) (5)

which should be supplemented with an initial condition at
some x = x0

ψ(x0, k) = ψ0(k) (6)

containing the nonperturbative input about the coupling
to the hadronic target.

The physical interpretation of the pomeron wave func-
tion is provided by the fact that in the DL approximation
(5) reduces to an equation for the fully amputated func-
tion φ(x, k) = η(k)ψ(x, k):

∂

∂ ln k2

∂

∂ ln 1/x
φ(x, k) =

3αs(k2)
π

φ(x, k) (7)

which coincides with the standard equation for the unin-
tegrated gluon density xg(x, k2) in the DL limit. In fact,
this circumstance lies at the root of our method to intro-
duce a running coupling into the scheme. Thus we may
identify

φ(x, k) = cxg(x, k) (8)

The normalizing factor c cannot be determined from the
asymptotic (7). We shall be able to fix it by studying the
coupling of the pomeron to the incoming virtual photon
in the next section.

3 Coupling to the virtual photon

Once the function φ proportional to the gluon density is
determined, one has to couple it to the projectile particle
to calculate observable quantities. In particular, to find
the structure function of the target one has to couple the
gluons to the incoming virtual photon, that is, to find
the colour density ρ(q, k) which connects the photon of
momentum q to the gluon of momentum k. This problem
is trivial within the BFKL approach with a fixed small
coupling. Then it is sufficient to take the colour density
in the lowest order, which corresponds to taking for it the
contribution of a pure quark loop into which the incoming
photon goes ρ0(q, k).

The problem complicates enormously when one tries
to introduce a running coupling into ρ. Then one has to
take into account all additional gluon and qq̄ pair emis-
sions which supply powers of the logarithms of transverse
momenta. Apart from making the coupling run, they will
evidently change the form of ρ(q, k). Unfortunately the
bootstrap relation can tell us nothing about the ultimate
form of the colour density with a running coupling, which
essentially belongs to the t-channel with a vacuum colour
quantum number. So we have to find a different way to
introduce a running coupling into ρ.

A possible systematic way to do this consists in ap-
plying to the photon-gluon coupling the DGLAP evolu-
tion equation. One may separate the colour density from
the rest of the amplitude by restricting its rapidity range
to some maximal rapidity y0 ∼ logQ2 (which, of course
should be much smaller than the overall rapidity Y ∼
logQ2/x). Then the kinematical region of ρ(q, k) will ad-
mit the standard DGLAP evolution in Q2. Solving this
equation one will find the quark density at scale Q2 of
the gluon with momentum k (i.e. essentially the struc-
ture function of the gluon with the virtuality k2). This is
exactly the quantity needed to transform the calculated
gluon density created by the target into the observable
structure function of the target. As a starting point for
the evolution one may take the perturbative colour den-
sity ρ0 at some low Q2 when the logs of the transverse
momenta might be thought to be unimportant.

This ambitious program, combining both evolution in
both 1/x and Q2, does not, however, look very simple to
realize. As a first step, to clearly see the effects of the intro-
duction of a running coupling according to [3, 4], we adopt
a more phenomenological approach here, trying to guess
a possible correct form for ρ(q, k) on the basis of simple
physical reasoning and also using the DL approximation
to fix its final form.

With a pure perturbative photon colour density one
would obtain for the γ∗p cross-section

σ(x,Q2) =
∫
d2kρ0(q, k)φ(x, k)

(2π)2η2(k)
(9)

In fact, the projectile particle should be coupled to the full
pomeronic wave function φ/η2. From the physical point
of view this expression is fully satisfactory for physical
particles. However it is not for a highly virtual projectile.
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k

Fig. 1. The forward amplitude for a pomeron coupled to a
virtual photon

To see this, we first note that for the forward amplitude
our method of introducing a running coupling reduces to a
very simple rule: the scale at which the coupling should be
taken is given by the momentum of the emitted real gluon
((k − k′)2 in the upper rung in Fig. 1). Now take Q2 very
large and apply the DL approximation. Then the momenta
in the ladder become ordered from top to bottom

Q2 >> k2 >> k′2 >> .....

In this configuration, as can be traced from (2) and (9),
all αs’s acquire the right scale (i.e. corresponding to the
DGLAP equation) except for the upper rung: αs(k2) ap-
pears twice. This defect can be understood if one notices
that the upper gluon is, in fact, coupled to a virtual par-
ticle. If this particle were a gluon, then the interaction (4)
would cancel one of the two α(k2)’s and substitute it by
an α taken at the scale corresponding to its own virtuality.
We assume that something similar should take place also
for virtual quarks to which the gluon chain may couple.
The scale of the particle momenta squared which enter
the upper blob in Fig. 1 should have the order Q2 (this is
the only scale that remains after these momenta are in-
tegrated out). As a result the lowest order density should
be rescaled according to

ρ0(q, k) → α(Q2
1)

α(k2)
ρ0(q, k) (10)

where Q2
1 has the same order as Q2.

The approximation we assume in this paper is that
the substitution (10) is sufficient to correctly represent
the photon colour density with a running coupling. We
shall check its validity by studying the quark density which
results from (10) in the DL approximation and comparing
it with the known result based on the DGLAP equation.

Explicitly the zeroth order density ρ0 has the following
forms for the transverse (T) and longitudinal (L) photons

(see e.g. [9] and do the integration in the quark loop mo-
menta)

ρ
(T )
0 (q, k) =

3e2

8π2

∑
f

Z2
f

∫ 1

0
dα

(
(α2 + (1 − α)2)((1 + 2z2)

×g(z) − 1) +
ζ

α(1 − α) + ζ
(1 − g(z))

)
(11)

ρ
(L)
0 (q, k) =

3e2

2π2

∑
f

Z2
f

∫ 1

0
dα

(α(1 − α))2

α(1 − α) + ζ

×(1 − g(z)) (12)

Here the summation goes over the quark flavours. The
dimensionless variables ζ and z are defined as

ζ =
m2

f

Q2 , z =
k2

4Q2

1
α(1 − α) + ζ

(13)

and mf and Zf are the mass and charge of the quark of
flavour f . The function g(z) is given by

g(z) =
1

2z
√
z2 + 1

ln
√
z2 + 1 + z√
z2 + 1 − z

(14)

The structure function is obtained from the cross-section
by the standard relation

F2(x,Q2) =
Q2

πe2
(σ(T ) + σ(L)) (15)

In the DL limit only the transverse cross-section con-
tributes. We can also neglect the quark masses in this
approximation. Then, with a substitution (10), from (9),
(11) and (15) we obtain an expression for the quark (sea)
density of the target

xq(x) =
3

π2b20

Q2

lnQ2

∫ Q2
dk2φ(x, k)
k4 ln k2

∫ 1

0
dα(α2 + (1 − α)2)

×((1 + 2z2)g(z) − 1) (16)

where g(z) is given by (14) and we assumed that large
values of k2 < Q2 contribute in accordance with the DL
approximation. In this approximation the asymptotics of
the gluon density xg(x, k2) and consequently of φ(x, k2)
is known:

φ(x, k2) = cxg(x, k2) ' c exp

√
a ln

1
x

ln ln k2 (17)

where a = 48/b0. Putting (17) into (16), after simple cal-
culations we find the asymptotical expression for the quark
density

xq(x, k2) ' 4c
π2b20

√
ln ln k2

a ln 1/x
exp

√
a ln

1
x

ln ln k2 (18)

On the other hand, from the DGLAP equation we find,
with the same normalization

xq(x, k2) ' 4
3b20

√
ln ln k2

a ln 1/x
exp

√
a ln

1
x

ln ln k2 (19)
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As we observe the approximation (10) for the colour den-
sity of the photon projectile leads to the correct relation
between the quark and gluon densities in the DL limit.
This justifies the use of (10), at least for high 1/x and Q2.
Comparing (18) and (19) we also obtain the normalization
factor c which relates the pomeron wave function to the
gluon density

c = π2b0/3 (20)

4 The initial distribution

To start the evolution in 1/x we have to fix the initial
gluon density at some small value x = x0. Evidently, the
smaller is x0, the smaller is the region where we can com-
pare our predictions with the experimental data. On the
other hand, if x0 is not small enough, application of the
asymptotic hard pomeron theory becomes questionable.
Guided by these considerations we choose x0 = 0.01 as
our basic initial x although we also tried x = 0.001 to see
the influence of possible subasymptotic effects.

The initial wave function φ(x0, k
2) has to be chosen

in accordance with the existing data at x = x0 and all
k2 available. The experimental F2 is a sum of the singlet
and nonsinglet parts, the latter giving a relatively small
contribution at x = 0.01. Our theory can give predictions
only for the singlet part (and one of the criteria for its
applicability is precisely the relative smallness of the non-
singlet contribution). The existing experimental data at
x = 0.01 give values for F2 averaged over rather large in-
tervals of x and Q2. For all these reasons, rather than to
try to adjust our initial φ(x0, k

2) to the pure experimental
data, we have preferred to match it with the theoretical
predictions for the gluon density and the singlet part of F2
given by some standard parametrization fitted to the ob-
served F2 in a wide interval of Q2 and small x. As such we
have taken the GRV LO parametrization [10]. The choice
of LO has been dictated by its comparative simplicity and
the fact that at x = 0.01 the difference betwen LO and
NLO is insignificant.

Thus, for the initial distribution we have taken the
GRV LO gluon density with an appropriate scaling fac-
tor. Putting this density into (8), (9) and (15) one should
be able to reproduce the sea quark density and thus the
singlet part of the structure function. In the GRV scheme
the relation between the gluon density and the quark den-
sity is much more complicated and realized through the
DGLAP evolution. Since the DGLAP evolution and the
pomeron theory are not identical, one should not expect
that our initial gluon density should exactly coincide with
the GRV one to give the same singlet structure funcction.
One has also to have in mind the approximate character
of our colour density ρ at small Q2. In fact, with the ini-
tial φ given by (8) and the gluon density exactly taken
from the GRV parametrization at x = 0.01 we obtain a
30% smaller values for the singlet part of the structure
function as given by the same GRV parametrization, the
difference growing at low Q2. To make the description bet-
ter we used a certain arbitrariness in the scale Q2

1 which
enters (10) and also the scale at which the coupling freezes

in the density ρ. The optimal choice to fit the low Q2 data
is to take

α(Q2
1) =

4π
b0

1
ln((0.17 ∗Q2 + 0.055 (GeV/c)2)/Λ2)

(21)

With this α(Q2
1) the obtained singlet structure function

at x = 0.01 has practically the same Q2 dependence as
the GRV one, although it results 30% smaller in magni-
tude. This mismatch can be interpreted in two different
ways. Either we may believe that the gluon density given
by the GRV is the correct one and the deficiency in the
singlet part of the structure function is caused by our ap-
proximate form of the colour density ρ (which is most
probable). Or we may think that the colour density to be
used in the DGLAP should coincide with ours only for
large enough Q2 and 1/x and at finite values they may
somewhat differ (our relation (8) was established strictly
speaking only in the DL limit). Correspondingly we may
either take the relation (8) as it stands and use the GRV
LO gluon density at x = 0.01 in it, or introduce a correct-
ing scaling factor 1.3 which brings the structure function
calculated with the help of (9)–(15) into agreement with
the GRV predictions. In the following we adopt the second
alternative, that is we assume that our initial gluon distri-
bution at x = 0.01 is 30% higher that the one given by the
GRV parametrization. The singlet part of the structure
function at x = 0.01 calculated from (9)–(15) with this
choice is shown in Fig. 2 together with the GRV predic-
tions. However one can easily pass to the first alternative
by simply reducing our results by factor 1.3.

5 Evolution: numerical results

With the initial wave function φ(x = 0.01, k2) chosen as
indicated in the preceding section we solved the evolution
equation for 10−8 < x < 10−2. The adopted calculational
scheme was to diagonalize the Hamiltonian in (2), reduced
to one dimension in the transverse momentum space after
angular averaging, and represent the initial wave function
as a superposition of its eigenvectors. To discretize k2 a
grid was introduced, after which the problem is reduced
to a standard matrix one. To check the validity of the ob-
tained results we have also repeated the evolution using
a Runge-Kutta method, resulting in a very good agree-
ment. The final results obtained for the gluon distribution
xg(x,Q2) as a function of x for various Q2 are shown in
Fig. 3 where the first two plots correspond to x and Q2

presently available, whereas the last two plots show the
behaviour of the calculated gluon density in the region
up to very small x and very high Q2, well beyond the
present possibilities. For comparison we have also shown
the gluon densities for the GRV LO parametrization [10],
for the MRS parametrization [11] and also for the pure
BFKL evolution as calculated in [12].

Putting the found gluon densities into (9)–(15) we ob-
tain the (singlet part of) proton structure function
F2(x,Q2). The results are illustrated in Fig. 4 for the x
dependence. As for the gluon densities, the experimen-
tally investigated region is shown in the first two plots,
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spond to the GRV prediction
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Fig. 3. The gluon distributions as a function of x evolved from x = 0.01 and x = 0.001 for the experimentally accessible
kinematical region and for asymptotically high values of Q2 and 1/x. Standard DGLAP evolved parametrizations (GRV-LO
and MRS) and the BFKL evolved distributions from [12] (we report only few points connected by lines) are shown for comparison
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Fig. 4. x dependence of the singlet part of the proton structure function obtained by evolution from x = 0.01 and x = 0.001,
compared to the GRV prediction and the ZEUS 94 data. Values for asymptotically high values of Q2 and 1/x are also shown

in which the existing experimental data from [2] are also
presented.

Finally, to see a possible influence of subasymptotic
effects, we have repeated the procedure taking as a start-
ing point for the evolution a lower value x = 0.001. The
resulting gluon distributions and structure functions are
also presented in the above figures.

6 Discussion and conclusions

To discuss the obtained results we have to remember that
they involve two quantities of a different theoretical sta-
tus. One is the pomeron wave function φ which can be
identified with the gluon distribution (up to a factor) on
a rather solid theoretical basis. The other is the quark
density (which is equivalent to the structure function),
for which we actually have no rule for the introduction of
a running constant and which in the present calculation
involves a semi-phenomenological ansatz (10). Evidently
the results for the latter are much less informative as to
the effect of the running coupling introduced in our way.
Therefore we have to separately discuss our prediction for

the gluon distribution, on the one hand, and for the struc-
ture function, on the other.

Let us begin with the gluon distribution. Compar-
ing our results with those of GRV, which correspond to
the standard DGLAP evolution, we observe that at high
enough Q2 and low enough x our distributions rise with
Q and 1/x faster than those of GRV. This difference is,
of course, to be expected. The hard pomeron theory in
any version predicts a power rise of the distribution with
1/x to be compared with (19) for the DGLAP evolution.
As to the Q-dependence, the fixed coupling (BFKL) hard
pomeron model predicts a linear rise, again much stronger
than (19). Our running coupling model supposedly leads
to a somewhat weaker rise. From our results it follows that
it is still much stronger than for the DGLAP evolution.
However one can observe that these features of our evolu-
tion become clearly visible only at quite high Q and 1/x.
For moderate Q < 10 GeV/c and/or x > 10−4 the differ-
ence between our distributions and those of GRV is in-
significant. As to the DGLAP evolved MRS parametriza-
tion, it gives the gluon distribution which lies systemati-
cally below the GRV one and, correspondingly, below our
values, the difference growing with Q and 1/x.
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We can also compare our gluon distributions with the
pure BFKL evolution (fixed coupling) results, as presented
in [12]. One should note that the initial values for the evo-
lution chosen in [12] are rather different from ours (bor-
rowed from GRV). The initial gluon distribution in [12]
is smaller than ours by a Q-dependent factor, equal to
∼ 2.5 at Q = 2 GeV/c and ∼ 1.4 at Q = 30 GeV/c. If
one roughly takes that into account then one concludes
that at moderate 1/x our evolution and the pure BFKL
one lead to quite similar results. However at smaller x one
observes that our running coupling evolution predicts a
weaker rise with Q, as expected.

Passing to the structure functions we observe in Fig. 4
that our results give a somewhat too rapid growth with
1/x in the region 10−3 < x < 10−2 as compared to the
experimental data (and also to the parametrizations GRV
fitted to these data). With the scaling factor 1.3 intro-
duced to fit the data at x = 0.01 we overshoot the data
at x < 10−3 by ∼25%. Without this factor we get a
very good agreement for x < 10−3 but are below exper-
iment at x = 0.01 by the same order. This discrepancy
may be attributed either to subasymptotic effects or to
a poor quality of our ansatz (10). Comparison with the
result obtained with a lower starting point for the evolu-
tion x = 0.001 shows that subasymptotic effects together
with a correct form of coupling to quarks may be the final
answer.
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